AI-Mg-Pr (Aluminum-Magnesium-Praseodymium)

V. Raghavan

Recently, [1988Odi] determined a full isothermal section for this system at 400 °C. [1996Odi] constructed a liquidus projection and several pseudobinary sections in the Al-Mg-PrAl₂ region.

Binary Systems

The Al-Mg phase diagram [1998Lia] has the following intermediate phases: Mg₂Al₃ (cubic, labeled β), R or ϵ (rhombohedral), and Mg₁₇Al₁₂ (*A*12, α Mn-type cubic, denoted γ). The Al-Pr phase diagram [2002Oka] shows the following intermediate compounds: α Pr₃Al (*D*0₁₉, Ni₃Sn-type hexagonal), β Pr₃Al (*L*1₂, AuCu₃-type cubic), Pr₂Al (*C*23, Co₂Si-type orthorhombic), α PrAl (ErAl-type orthorhombic), β PrAl (CeAl-type orthorhombic), PrAl₂ (*C*15, MgCu₂-type cubic), PrAl₃ (Ni₃Sn-type hexagonal), PrAl₄ or β Pr₃Al₁₁ (*D*1₃, Al₄Ba-type tetragonal), and α Pr₃Al₁₁ (α La₃Al₁₁-type orthorhombic). The Mg-Pr phase diagram [2005Guo] depicts the following intermediate phases: Mg₁₂Pr (*D*2_b, ThMn₁₂-type tetragonal), Mg₄₁Pr₅ (Mg₄₁Ce₅-type tetragonal), Mg₃Pr (*D*0₃, BiF₃-type cubic),

 Mg_2Pr (*C*15, $MgCu_2$ -type cubic), and MgPr (*B*2, CsCl-type cubic).

Ternary Phase Equilibria

With starting metals of 99.995% Al, 99.95% Mg, and 99.78% Pr, [1988Odi] arc-melted about 150 alloys and annealed them at 400 °C for 480 h. The phase equilibria were studied by metallography and x-ray powder diffraction. The isothermal section at 400 °C constructed by [1988Odi] is redrawn in Fig. 1 to comply with the accepted binary data. [1988Odi] indicated in the ternary region (along the 33.3 at.% Pr line) a phase based on Mg₂Pr. This phase is labeled λ here. It may be noted that Mg₂Pr is not stable at 400 °C. A ternary compound Al₂Mg_{0.88}Pr_{0.12} (denoted τ here and as λ_1 by [1996Odi]) is stable at this temperature. It has the MgZn₂-type hexagonal structure, with the lattice parameters of *a* = 0.55186 nm and *c* = 0.8920 nm [1988Odi].

[1996Odi] prepared 153 alloys from the same starting metals as used by [1988Odi]. The phase equilibria were

Fig. 1 Al-Mg-Pr isothermal section at 400 °C [1988Odi]. Narrow two-phase regions are omitted

Fig. 2 Al-Mg-Pr pseudobinary section along the Al- τ join [1996Odi]

Fig. 3 Al-Mg-Pr pseudobinary section along the PrAl₂-Mg join [1996Odi]

Fig. 4 Al-Mg-Pr liquidus projection in the Al-Mg-PrAl₂ region [1996Odi]

studied with metallography, differential thermal analysis, and x-ray powder diffraction. Four pseudobinary sections of the simple eutectic type were determined by [1996Odi] along Al- τ , τ -Mg₂Al₃, τ -Mg₁₇Al₁₂, and PrAl₂-Mg joins. The sections along Al- τ and PrAl₂-Mg joins are redrawn in Fig. 2 and 3. The eutectic temperatures for the τ -Mg₂Al₃ and τ -Mg₁₇Al₁₂ sections (not shown here) are 438 and 450 °C, respectively, and the eutectic compositions are 60 mol% Mg₂Al₃ and 45 mol% Mg₁₇Al₁₂.

The liquidus projection determined by [1996Odi] for the Al-Mg-PrAl₂ region is redrawn in Fig. 4. The final solidification in the Al-Mg₂Al₃- τ , Mg₂Al₃-Mg₁₇Al₁₂- τ ,

 $Mg_{17}Al_{12}$ -Mg- Pr_3Al_{11} , Al- Pr_3Al_{11} - τ , and $Mg_{17}Al_{12}$ - Pr_3Al_{11} - τ subregions are through ternary eutectic reactions E_1 , E_2 , E_3 , E_4 , and E_5 , respectively, all occurring between 434 and 440 °C.

References

- 1988Odi: Kh.O. Odinaev, I.N. Ganiev, and V.V. Kinzhibalo, Phase Diagram of the Al-Mg-Pr System at 673 K. *Tsvetn. Metall.*, 1988, (5), p 91-94, in Russian
- **1996Odi:** Kh.O. Odinaev, I.N. Ganiev, and A.Z. Ikromov, The Pseudobinary Sections and the Liquiuds Surface of the Al-Mg-PrAl₂ System, *Metally*, 1996, (3), p 170-173, in Russian; TR: *Russ. Metall.*, 1996, (3), p 126-129

- **1998Lia:** P. Liang, H.L. Su, P. Donnadieu, M. Harmelin, A. Quivy, P. Ochin, G. Effenberg, H.J. Seifert, H.L. Lukas, and F. Aldinger, Experimental Investigation and Thermodynamic Calculation of the Central Part of the Mg-Al Phase Diagram, Z. Metallkd., 1998, **89**(8), p 536-540
- 2002Oka: H. Okamoto, Al-Pr (Aluminum-Praseodymium), J. Phase Equilb., 2002, 23(4), p 381
- 2005Guo: C. Guo and Z. Du, Thermodynamic Assessment of the Mg-Pr System, J. Alloys Compd., 2005, 399, p 183-188